
So�ware Development (cs2500)

Lecture 20: Writing a Game

M.R.C. van Dongen

November 17, 2010

Contents
1 Introduction 1

2 Linear Search 2

3 Speci�cations 3

4 Class Development 4

5 Prep Code 6

6 Test Code 6

7 Real Code 6

8 Debugging 9

9 For Friday 10

1 Introduction
�is lecture we shall study a search algorithm and implement a game. �e search algorithm is linear

search. �e game is a battleship-like game. However, we shall not implement the full-blown version.

Instead, we shall implement a simpli�ed version. Using the speci�cations as our input, we shall

• write prep code,

• write test code, and

• write real code.

1

On Monday we shall study JUnit testing, which should let us write proper test code. On Wednesday we

shall implement the full-blown version of the game. �e search algorithm is not covered by the book.

�e game is covered by Chapter 5 in the book.

2 Linear Search
Despite its simplicity, the linear search algorithm is one of the fundamental algorithms in computer

science. Many e�cient algorithms depend on linear search.

Basically, the linear search algorithm is a le�-to-right search algorithm that traverses a sequence of

items so as to locate an item in the sequence that satis�es a certain property. If the algorithm fails then all

member in the sequence lack the property. Otherwise the algorithm locates the “�rst” item that satis�es

the property.

For arrays, the algorithm is particularly pleasant to formulate. �e termination and correctness proofs

are also pleasantly easy.

�e remainder of this section studies a simpli�ed form of the linear search algorithm. For simplicity

all arrays contain int values and a single property which is given by a method boolean found(int
value). In a future lecture we shall generalise the algorithm.

�e following is the basic form of linear search for int arrays. �e purpose of the algorithm is to �nd

the le�-most number in the array that satis�es our given property or decide that there is no number in

the array that satis�es the property. �e static method boolean found(int number) is true if number
satis�es the property and false otherwise.

int index = 0;
// index <= array.length and
// !found(array[prev]) for 0 <= prev < index
while (index < array.length && !found(array[index])) {

index ++;
// index <= array.length and
// !found(array[prev]) for 0 <= prev < index.

}
// index <= array.length and
// (!found(array[prev]) for 0 <= prev < index) and
// (index >= array.length || found(array[index]))

Java

�e reason why the implementation is presented using a while loop is that this makes it easier to state

the proof.

Notice that if found() always returns false then the algorithm enumerates all possible indices in

the array and terminates with the value arrays.length as the �nal value for index. If found() returns

true for some index value then the algorithm has located an item that satis�es the property and the

algorithm also terminates. �ese observations form an informal version of a termination and correctness

proof. In the remainder of this section we shall provide more formal proofs.

As explained in Lecture 4 the condition a�er the while loop is constructed using the invariants before

the loop, the invariants at the end of the body of the loop, and the condition of the while loop. �e

2

condition of the loop is of the form ‘A && !B ’. Negating it gives us ‘(!A) || B ’.

Let’s �rst look at the termination proof.

�eorem 1. �e linear search algorithm terminates.

Proof. Before the while loop and just before the end of the body of the while loop we have ‘index <=
arrays.length’. Together with the condition of the while loop this guarantees that index cannot exceed

array.length, which is non-negative. Initially, index is equal to 0 and each iteration increments index.

�erefore, the maximum number of iterations is equal to arrays.length.

�e correctness proof is equally di�cult.

�eorem 2. �e linear search algorithm is correct.

Proof. As noticed before the condition a�er the while loop must hold. �e termination proof guarantees

that the algorithm will eventually reach the point where this condition holds.

�e condition a�er the while loop is of the form ‘E && F && G’ and we’ve proved that it must

hold. �erefore E , F , and G are all true. In particular this means that E — it is the condition ‘index <=
array.length’ — must be true. All we need to do is consider two cases which cover all possibilities that

arise when index <= array.length is true.

Complete Failure: Assume that ‘index == array.length’ holds. If this case holds then all calls to

found() failed for all values of index in 0, 1, …, array.length - 1. We can prove this formally by

substituting array.length for index in ‘!found(array[prev]) for 0 <= prev < index’.

(Partial) Success: If ‘index < array.length’ holds, then ‘index >= array.length || found(ar-
ray[index])’ is equivalent to ‘found(array[index])’.

3 Speci�cations
�is section presents the speci�cations of the game. �e speci�cations are as follows. We have to

implement a Battleship-style game called Sink-a-dot-Com. �e game is played on 7×7 grid. �e purpose

of the game is to sink “dot.coms” instead of ships. Initially there are three dot.coms. Each dot.com

occupies three cells on the grid. �e program randomly places the dot.coms on the grid. While there are

dot.coms le�:

1. �e program prompts the user to guess a cell.

2. �e program reads in the user’s guess.

3. �e program checks the cell against the dot.com positions.

4. Finally, the program takes an appropriate action:

• If the guess is a kill then the dot.com is deleted.

• If the guess is a hit then the cell is deleted.

3

• Otherwise, the program reports a miss.

Following the book, we start by implementing a simpli�ed version of the game. Later we’ll scale this

version to the full-blown game.

In the simpli�ed version:

• We have only one dot.com.

• We represent it as a 3-valued int array.

• �e values in the array are location cell numbers of the cells occupied by the dot.com.

• �e location cells are consecutive numbers between 1 and 7.

• Rather that guessing cells, the user now guesses location cells.

• If the user guesses right we announce a hit.

• If there are three hits the game ends.

• Otherwise we continue.

4 Class Development
�is time, we’ll use the following methodology to writing our SimpleDotCom class.

1. Figure out what the class is supposed to do.

2. List the instance variables and methods.

3. Write prep code (also known as pseudo code) for the methods.

4. Write test code for the methods. Yes, you’re reading this right. We’re writing the test code before we

implement the class. �ere are several advantages.

• �inking about the testing of the methods helps clarify what the methods themselves need

to do.

• Using the methods in the test code gives us a chance to play with the methodapi (Application

Programming Interface). If there’s something wrong with the api or if it’s not easy to use,

then we can adjust the api before we implement the methods themselves.

• �e test code acts as documentation/contract: it states the expected behaviour of the meth-

ods.

• By writing test code early, we can use it straight away. It help prevent scenarios where

you �rst write the entire class, have no time to test it, and end up with a poor/erroneous

implementation.

4

5. Write real code for the methods: write the class.

6. Debug and reimplement as required.

Our �rst task is to �gure out what the class is supposed to do. Sometimes playing a possible scenario

helps clearing this up. Let’s see:

1. Game starts: we start by creating a random DotCom. We continue by generating three random

consecutive cell locations. For this example let’s assume the cells are as follows: 1 2 3 .

2. Game play begins: �e user starts guessing. �is may lead to the following interaction.

$ java SimpleDotComGame
Enter a number: 2
hit
Enter a number: 3
hit
Enter a number: 4
miss
Enter a number: 1
kill

Unix Session

3. Game �nishes: �is may look like the following.

You took 4 guesses Unix Session

Having �gured out what the class is supposed to do, we continue with our second task, which is

listing the instance variables and methods for our class. Following the book, we decide to opt for the

attributes and methods that are listed in Figure 1.

SimpleDotCom
int[] locationCells
int hits
String checkYourself(String guess)
void setLocationCells(int[] loc)

Figure 1: Attributes and methods for SimpleDotCom game.

locationCells: �is attribute stores the location cell numbers.

hits: �is attribute counts the number of hits.

checkYourself: �is method checks the user’s guess and returns the program’s answer.

setLocationCells: �is method randomly initialises locationCells.

5

5 Prep Code
We’ve just decided which instance variables are needed in our SimpleDotCom class. �e next thing on our

list is to write prep code for our methods. Here prep code is the book’s name for pseudo code.

In this section we shall provide a possible implementation for the methods. Note that this imple-

mentation is deliberately di�erent from the implementation from the book. �e main reason is that

the book uses the break statement, which we’re not allowed to use. To keep up with the book, the

following implementation contains a deliberate error. If you spot the error, well done, but keep it to

yourself. Otherwise, don’t worry, we’ll squash it in the next two lectures.

�e following is a possible implementation for checkYourself.

public boolean checkYourself(String guess) {
int cell = 〈convert guess to int〉;
boolean found = 〈find cell in locationCells〉;
〈increment hits if found〉;
return 〈use found and hits and return result as String〉;

}

Pseudo Code

�e implementation of setLocationCells is equally straightforward. Note that we implement it as

a private method because it is not and should not be used outside the SimpleDotCom class. By making

the public we unnecessarily violates encapsulation, which should be avoided.

private void setLocationCells() {
int cell = 〈generate first cell number〉;
〈set locationCells to {cell, cell+1, cell+2}〉;

}

Pseudo Code

6 Test Code
In this section we are supposed to write test code to test our methods. For the moment we postpone this

because we’re going to do this using the JUnit framework, which we haven’t studied yet.

7 Real Code
Having written our prep code, and pretending we’ve written our test code, we’re ready to turn our prep

code and turn it into real code.

First let’s have a look at the prep code for checkYourself. We have four well-de�ned and easy tasks.

Using the strategy which we studied in Lecture 15, we’ll turn the easy pseudocode into Java and the less

straightforward pseudocode into method calls.

• �e �rst pseudo statement is given by ‘int cell = 〈convert guess to int〉’. Using the method

Integer.parseInt(), which we’ve already used for Assignment 1, this part is easy.

int cell = Integer.parseInt(guess); Java

6

• �e second statement is ‘boolean found = 〈find cell in locationCells〉’. It is not clear how

to do this, so let’s turn this into a method call. If we implement the method as an instance method

and pass the value of cell, then we should be able to implement this method. A�er all, the instance

method can see the instance variable locationCells. (Of course, we could have also opted for a

class method that takes both cell and locationCells as argument.) All we now need to do is

choose a good name for the method — remember it has to be a verb. Let’s choose findLocation(
).

boolean found = findLocation(cell); Java

• �is is going well. Next task: ‘〈increment hits if found〉’. �is is trivial.

hits += (found ? 1 : 0); Java

• Our �nal task at this level consists of turning ‘〈use found and hits and return result as
String〉’ into something meaningful. �e task does not seem too di�cult, and we could probably

implement it using a few statements. Still we’re going to implement it as a method call. Let’s do

this as follows:

return getResultAsString(found); Java

Notice that arguably we should have turned cell and found into final variables.

Our method checkYourself is looking pretty cool:

public String checkYourself(String guess) {
int cell = Integer.parseInt(guess);
boolean found = findLocation(cell);
hits += (found ? 1 : 0);
return getResultAsString(found);

}

Java

We still have to implement the methods findLocation() and getResultAsString() but these

don’t seem too di�cult.

We’re doing great. Let’s have a look at the pseudocode for the method setLocationCells. �ere are

only two tasks.

• �e �rst task is ‘int cell = 〈generate first cell number〉’. �e result has to be an int and it

has to be a random number in the range 0–3. We’ve seen this before. It’s crying out for a Random
object.

final int maxValue = MAX_CELL_VALUE - CELLS_IN_DOT_COM;
int cell = rand.nextInt(maxValue + 1);

Java

Here MAX_CELL_VALUE is the maximum possible cell number, CELLS_IN_DOT_COM is the number

of cell numbers in a dot.com, and rand a Random object. We’ll implement each of them as class

7

variables.
1

private final static Random rand = new Random();
private final static int MAX_CELL_VALUE = 6; // Maximum possible cell number
private final static int CELLS_IN_DOT_COM = 3; // Number of cells in a dot.com

Java

• �e last task is ‘〈set locationCells to {cell, cell+1, cell+2}〉’. We can implement this using a simple

for loop.

for (int index = 0; index != CELLS_IN_DOT_COM; index ++) {
locationCells[index] = cell ++;

}

Java

Note that using the enhanced for loop makes no sense because we don’t need the current values in

the array locationCells to initialise the array.

Looks like fillLocationCells() is �nished:

private void setLocationCells() {
final int maxValue = MAX_CELL_VALUE - CELLS_IN_DOT_COM;
int cell = rand.nextInt(maxValue + 1);
for (int index = 0; index != CELLS_IN_DOT_COM; index ++) {

locationCells[index] = cell ++;
}

}

Java

We still have to implement two methods: findLocation() and getResultAsString(). Let’s start

with findLocation().

�e instance method findLocation() is given an int as its argument. �e task of the method is

deciding whether this int is in the array locationCells, which is an instance attribute. We know how to

do this: linear search. �e following is a possible implementation.

private boolean findLocation(int cell) {
int index = 0;
boolean found = false;
while ((index != locationCells.length) && !found) {

found = locationCells[index ++] == cell;
}
return found;

}

Java

�ere are two more possible implementations, which rely on the fact that we know that the numbers

1
�e decision to use class constants for the constants is 100% justi�able because the constants do not change and there is

no need to have a separate constant for each instance of the class. However, the decision to implement the Rand attribute into

a class attribute is less obvious. On the one hand, there’ no harm in sharing the attribute among all instances of the class, so

implementing it as a class attribute should be �ne. On the other hand, sharing the attribute may a�ect the sequence of random

numbers when we create the Rand object with a �xed seed. �is may unnecessarily hinder testing.

8

in locationCells are consecutive and start with the smallest possible number. �e following is how we

may implement it. �is method is much cleaner, simpler, and e�cient.

private boolean findLocation(int cell) {
return (loationCells[0] <= cell)

&& (cell <= locationCells[locationCells.length - 1]);
}

Java

We could have also written the method as follows.

private boolean findLocation(int cell) {
final int difference = cell - locationCells[0];
return (0 <= difference) && (difference < locationCells.length);

}

Java

Note that this implementation demonstrates that all the information we need is the �rst value in the

array and the length of the array. In hindsight, using an array is a bit of an overkill.

�e last method which we have to implement is getResultAsString(). �is is also an instance

method. It is given a boolean which is true if and only if the user’s guess is a hit. At this stage, the value of

the instance variable hits should be correct (except for that bug which we shall ignore for the moment).

It looks as if we can implement this method straight away.

private String getResultAsString(boolean found) {
String result;
if (!found) {

result = "miss";
} else if (hits == CELLS_IN_DOT_COM) {

result = "kill";
} else {

result = "hit";
}
return result;

}

Java

Our class is implemented.

8 Debugging
Our last task is to debug our class and reimplement it as required. For the moment, let’s do this “by hand”.

Let’s use a main method in the SimpleDotCom class and change the method for a number of di�erent

scenarios. Clearly, this is not ideal. For the moment it’ll have to do.

�e following is the �rst scenario. (Notice that when we’re testing we have to make sure it’s repro-

ducible: this is why we create the Random object with a �xed seed.)

9

private final Random rand = new Random(0);

public static void main(String[] args) {
SimpleDotCom dotCom = new SimpleDotCom();
System.out.println(dotCom.checkYourself("0"));
System.out.println(dotCom.checkYourself("1"));
System.out.println(dotCom.checkYourself("2"));
System.out.println(dotCom.checkYourself("3"));
System.out.println(dotCom.checkYourself("4"));

}

Java

When we use this we get the following output: miss miss hit hit kill. �is looks promising.

Unfortunately, things are not always going that well.

public static void main(String[] args) {
SimpleDotCom dotCom = new SimpleDotCom();
System.out.println(dotCom.checkYourself("3"));
System.out.println(dotCom.checkYourself("4"));
System.out.println(dotCom.checkYourself("4"));

}

Java

When we use this we get the following output: hit hit kill. It looks as if we’ve found a bug.

9 For Friday
Study the notes and study Chapter 5.

10

	Introduction
	Linear Search
	Specifications
	Class Development
	Prep Code
	Test Code
	Real Code
	Debugging
	For Friday

